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A supersonic turbulent flow over an oglve-cylinder-flare has been solved numerically. The calculations
proceed in two parts. Initially, the parabollzed Navier-Stokes equations are solved for the ogive cylinder back to
a location upstream of the shock-wave sod boundary-layer Interaction. Then, the time-dependent Navler-Stokes
equations with a thin-layer approximation are solved for the remaining cylinder-flare portion. Results for a

Mach number of 2.0 and a unit Reynolds number of 11.42 x 106/m are obtained for angles of attack a = 0, 4,

and 8 deg. Good agreement has been found between computed and experimental results of the surface pressure
on the ogive-cylinder portion, and for the interaction region at a= 0 and 4 deg. The role of circumferential
communication in a three-dimensional shock-wave and boundary-layer interaction flowfield is discussed.

I. lntroduclion

N ogive-cylinder-flare configuration (Fig. I) is com-
monly seen in rockets, missiles, and space launch

vehicles. The ogive-cylinder is a basic slender aerodynamic

body, with the flare providing a natural fairing for multistage
spacecraft. In many circumstances, the flared afterbody is

also used to stabilize bodies in flight or to simulate un-
derexpanded rocket plumes. With advances in computers and

numerical techniques, inviscid supersonic calculations over
such a body are well developed and can be obtained in seconds

or minutes of computation time. _ However, in reality, a fluid
is viscous, and it is necessary to take into account the viscous
effects in order to predict the total force and moments ac-
curately.

Two interesting features are associated with viscous effects
on a slender body with a flare. The first and the most common

feature is the lee-side crossflow separation that strongly af-

fects the lift, drag, heating, and stability of a slender body,
especially at large angles of attack. The second feature is the
shock-wave and boundary-layer interaction near the corner of

the frustum (or flare). The pressure rise due to the "flare"
shock induces flow recirculation near the corner. The

variation of shock strength and the crossflow in the
meridional direction make the interaction flowfield three

dimensional. Moreover, the existence of lee-side separation

enriches the three-dimensional feature further, as illustrated
in Fig. 2, with oil-flow experiments by Chyu and Coe 2 on a

cylinder with a 23 deg cone frustum for various angles of
attack.

Computation of viscous supersonic flows over a body of

revolution and a conical body without streamwise separation
have been made previously with varying degrees of success

(e.g., Refs. 3-8). Among them, the recently developed
parabolized Navier-Stokes code using an implicit numerical
technique _ appears to be very promising for use as a research
and design tool.
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l-lung 9 solved the time-dependent, thin-layer ap-
proximation of the Navier-Stokes equations for a supersonic
laminar flow over a hollow cylinder with a flare at angles of
attack. The numerical results show good agreement with
experimental measurement of surface pressure and normal
force distribution. The results also show that the cir-

cumferential communication by means of the crossflow plays
an important role in this three-dimensional shock-

wave/boundary-layer interaction flowfield. In the present
study, the previous method 9 is extended to high Reynolds
number turbulent flow case.

The objectives of the present investigation are 1) to
demonstrate the feasibility of computing supersonic turbulent

flow over an ogive-cylinder-frustum, 2) to study the
associated three-dimensional shock-wave/turbulent boun-

dary-layer interaction near the cylinder-flare juncture, and 3)
to assess the role of crossflow separation in this interaction
flowfield.

To efficiently solve the problem, the calculations are done

in two parts. Initially, the parabolized Navier-Stokes

equations (Ref. 7, also employing the thin-layer ap-
proximations) are solved using an implicit factored scheme _0

for the portion of the ogive-cylinder up to a location xo, which
is ahead of the cylinder-flare interaction region. Then, the
time-dependent thin-layer Navier-Stokes equations (Ref. 9,

with extension to turbulent flow) are solved for the remaining
cylinder-flare portion where the streamwise recirculation

occurs. The time-dependent Navier-Stokes equations are
solved using a mixed explicit-implicit scheme developed by

MacCormack. j' Since the parabolized equations are solved
by matching a data plane in the streamwise direction, the
required computation time and storage are substantially less

than those required for the time-dependent approach.
However, the time-dependent approach is needed to account
for the shock-wave and boundary-layer interaction since the

parabolized equations are not stable in the region of
streamwise separated flows.

The calculated results are compared with the experimental
data of Ref. 2 at Mach number 2.0, unit Reynolds number

11.42x 106/m (0.29 x 106/in.), and angles of attack or=0, 4,
and 8 deg. lnviscid calculations are also presented for the
cylinder-frustum portion to show the viscous effects. Since

the employed parabolized Navier-Stokes approach has been

previously documented, _.s this paper will have more emphasis
on the development and the results of the time-dependent
calculation.
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Fig. ! Supersonic flows over an ogive-cylinder-flare.
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Fig. 2 Fluorescent oil studies of flow on a 10-1n.-dlam model with a
23-deg cone frustum; M** = 2.0.

!!. Analysis

Thin-Layer Approximation

Figures 3a and 3b show cross-sectional views of the
computational domain in the (x,r) and (r,¢) planes for a
cylinder frustum. Here, 8 is the cone half-angle of the flare.
The flow is assumed to be symmetric in ¢, and hence only the
half-plane 0 deg _<¢_<!80 deg is needed. The mesh is

uniformly spaced in both the x and ¢ directions, in the r
direction, a fine-mesh spacing is used in the region near the

body %<_r<_r/ to resolve the viscous forces, and a coarse-
mesh spacing is used in the outer region rf<r<r o, where
viscous effects are negligible. Both fine and coarse meshes are

geometrically stretched.

The governing equations of the present analysis for the
cylinder-frustum region are the time-dependent, com-

PRESCRIBED UPSTREAM

BOUNDARY CONDITIONS

t
xo

Ix. rl PLANE

Fig. 3

(5, ,'+) PLANE

Cross sections of the computational domain.

pressible, Navier-Stokes equations, cast in terms of mass-

averaged variables, with the bulk viscosity and specific tur-
bulent energy in the normal stress components omitted. The

resulting mean conservative relations are the same as their
laminar flow counterparts, except for the addition of the

Reynolds stress tensor and the Reynolds heat flux. Turbulent
closure is accomplished by expressing the Reynolds stress
tensor in terms of the product of an eddy viscosity E with the

mean velocity gradient. Also, a turbulent Prandtl number Pr,
is used for the Reynolds heat flux. In high Reynolds number

flows, however, the viscous effects are confined near the wall
boundary and are dominated by the viscous terms associated
with the derivatives in the direction outward from the wall.

Consequently, all viscous terms associated with derivatives
along the body are neglected, while those with second-order
derivatives in the direction outward from the body are
retained. Written in weak conservative form in transformed

cylindrical coordinates, the thin-layer approximate Navier-
Stokes equations are as follows.
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Here, L is the distance from the ogive nose to the fare juncture
and Lj the length of the flare portion, as described in Fig. 1;

= - V3(_ + t) ; (u, v, w) are velocity components in the axial,
radial, and azimuthal (x,r,¢) directions; p, p, and E are
density, pressure, and total energy, with E=e,+0.5
(u 2 + v 2 + w2), where e, is the specific internal energy. The
perfect gas relation isp= (7- 1)pe,. The molecular viscosity
is evaluated by Sutherland's formula.

Note that the retention of all the second derivatives

associated with the _ direction in Eq. (I) by no means implies
that every retained viscous term is larger than those neglected.
For instance, as seen from a boundary-layer analysis, the term
Ov/O_ in o= is of the same order of magnitude as the neglected
term au/at;. The retention of all (and just) the second
derivatives with respect to the direction outward from the
body is for consistency and convenience in extending the
numerical code to a general geometry. However, as the name
implies, the thin-layer approximation is valid only for
problems where the viscous forces are confined to a thin layer.
Another point is that, near the streamwise separation point,
a2u/a_ 2 may be larger than atu/OTi 2. However, this effect is
localized (two or three points around the separation point),
and the fluid has very low momentum near that point. Hence,
it is believed that the thin-layer approximation is able to
predict the general features of a flow with streamwise
separation insofar as the separation is "small" and confined
near the wall.

Boundary Conditions

The coordinates are body oriented, with the upstream

boundary positioned at x o ahead of the shock-wave and
boundary-layer interaction. The flow conditions at x o are
prescribed from the results of the parabolized Navier-Stokes

calculation. The outer boundary is set inside the bow shock
generated from the ogive nose and outside the shock
generated from the flare. In the present study, the ogive-

cylinder portion is long enough so that the outer boundary
conditions are assumed uniform in the _ direction and are
equal to the flow conditions at the outer edge of the upstream
boundary. Note that the angle of attack is imposed implicitly
through the upstream and the outer boundary conditions.
Therefore, the accuracy of the upstream (and hence the outer)

boundary conditions from the parabolized calculation--for
both viscous and the inviscid portions--is important to the
time-dependent calculation.

The symmetry condition is applied at ¢=0- and 180-deg

planes. The wall is assumed impermeable, and a no-slip
boundary condition is used. The wall is treated either as
isothermal or as adiabatic, with the wall pressure being

evaluated by the condition

ap/a_=o at _=0

In the present cases, the first mesh point is so close to the wall

that this pressure condition is appropriate. Details of the
numerical procedures are described in Refs. 9 and l 1.

Eddy-Viscosity Model

A two-layer turbulence model, developed by Baldwin and
Lomax, 12 is applied in the following fashion. In the inner
region, the Prandtl mixing length is used

where D is the Van Driest damping factor, K yon Kfirmlln's

constant, and _0 the absolute magnitude of vorticity,
_= IVxvl. In the outer region,

comte,= C _p (0.01680F,,_,13)

where

Fwa_.' = [r/ma_Fm, x or C.,krlmaxu_/Fma_,; the smaller]

Fro, _ is the maximum value of

F(q) =TlwD

and rh, u is the value of r_ at which it occurs. The Klebanoff
intermittency factor B is given by

B= []+ 5.5(C loebVl/Vlma_)6] -I

The quantity u,. is the maximum total velocity at a fixed (x,¢0
location. The constants appearing in the preceding relations
are

Ccr= l.6, C,,k=0.25, Cicjct, =0.3

In general, with no streamwise separation, F_,ake =
rtmt,Fm,_,. The eddy-viscosity model employed is similar to the
Cebeci-Smith model ]_ and avoids the trouble of finding the
edge of the boundary layer, which is difficult for nonuniform
inviscid flows. [A small difference in defining u, can lead to a
large difference in calculation of displacement thickness
6"=J_(l-u/u,)d_.] Note, however, that in a streamwise

separation region, very often the term Cwtqr,_,u2,/
F=u<_m_F=_, and hence the outer eddy viscosity may
differ from the Cebeci-Smith model substantially.

I!!. Resultsand Discussions

The experiments selected for comparison were conducted

by Chyu and Coe. _ The dimensions of the tested model are

that the diameter of cylindrical portion D o = 25.4 cm (10 in.),
the ogive portion Lo=3D o, L=7Do, Lt=17.95 cm, and
# = 23 deg. The flow conditions are freestream Mach number,

M_. =2.0, Reynolds number based on L, Ret =20.3 x 10 _,
with angles of attack u =0, 4, and 8 dee. The wall is assumed

to be adiabatic. The calculations are done in two parts using
different computer programs: first, a parabolized Navier-
Stokes code for the ogive-cylinder portion, and then the time-
dependent approach for the remaining cylinder-frustum
portion.

Og|ve Cylinder

The parabolized Navier-Stokes code (PNS), developed by
Schiff and Steger,7 is modified to solve the ogive-cylinder
portion up to xo/D o = 6. The PNS code also uses the thin-

layer approximation and the Baldwin-Lomax two-layer
turbulence model. To start the calculation for each angle of

attack, a viscous "conical" solution is generated by the
program at x/D o =0.1, with a cone half-angle matching the
body slope at that location. The solution is then marched in

the axial x direction with a constant step size. 40 grid points
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Fig. 4 Computed and experimentul pressure coefficient on oglve-
cylinder.

are distributed in the 17direction, using a geometric stretching

to ensure sufficient resolution in the laminar sublayer. 19 grid

points are evenly distributed on the meridional direction.

Figures 4a-4c compare the computed results from the

parabolized Navier-Stokes code with experimental
measurements of the surface pressure for three angles of

attack, ot = 0, 4, and 8 deg. The agreement is good.

Cylinder Frustum

The computed results from the parabolized Navier-Stokes

code at xo/D o =6 are interpolated to obtain the upstream

boundary condition for the time-dependent approach. A grid

of 45 x 34 x 20 points encloses the following computational

domain: E/D o from 6.0 to 8.04; ))/D o from 0 to 1.15; ¢) from

0 to 180 deg. A geometrically stretched fine mesh (20 points) is

used in the )) direction, from the body to ))/_0.096. A

minimum-mesh cell spacing, (A))) mm= 0.12 L/4Ret., results
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in the first mesh point away from the body being located at
about

Figure 5 compares surface pressure at zero angle of attack.

The agreement is good. Also shown in the figure arc the in-

viscid solutions for a sharp cone, a two-dimensional wedge,

and a cylinder frustum. Figures 6 and 7 compare surface

pressure for _ = 0, 90 and 180 deg at angles of attack c== 4 and

8 deg. In Fig. 6, the agreement is good and the general

features are predicted, except for the upstream pressure rise

and hence streamwise separation point at _= 180 des. At

a = 8 des, the computed result for the windward plane _ = 0

deg still shows very good agreement with the experimental

measurement. On the Ic¢ side, the viscous computation fails

to produce a sharp pressure peak near the cylinder-frustum
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juncture. (This will be discussed later.) The features of the
surface pressure variation along a constant _, and a constant

coordinate can be seen in Figs. 8a and 8b for o_=4 and 8

deg.
Plots of skin-friction coefficients in circumferential and

streamwise directions Cy, and C/_ are shown in Figs. 9a and
9b, for _ = 8 deg. A peak in C/_ results from the expansion
and acceleration of flow around the convex frustum corner.

In the circumferential direction, the maximum C/, shows
around ¢_=90 deg, due to the strong crossflow. While no

drastic change is shown near the convex corner, the C/, also
shows a sharp decrease near the cylinder-flare juncture,
associated with the streamwise separation, and becomes

negative, even at a small angle of attack, a=4 deg (not

shown).

Note that, at zero incidence, the flow is axisymmetric, and
the recirculation is a closed toroid. At an angle of attack, the

flare shock is stronger on the windward side and weaker on
the leeward side. If no circumferential communication, or
crossflow, occurs, the streamwise recirculation should be

larger on the windward side and smaller on the leeward side.
However, the variation of shock strength, in addition to the

imposed angle of attack, results in a strong crossflow which
causes the flowfield to behave in the opposite manner. The

crossflow sweeps much of low momentum fluid from the
windward boundary layer to the leeward boundary layer. This

leads to a forward movement of separation on the leeward
side, with the process resulting in the thinning and

strengthening of the windward boundary layer and thickening
of the leeward side and an aft movement windward, as can be

seen in the upstream rise of surface pressure and the plots of

streamwise skin friction C/_ in Fig. 9b. Moreover, as the angle
of attack increases to or=8 deg, the lee-side crossflow
separates, not only in the streamwise recirculation region (Fig.

9a), but also in the ogive-cylinder portion ahead of the shock-
wave and boundary-layer interaction region. The ex-

perimental results show that the existence of lee-side
separation, which now sweeps the low-momentum fluid away
from the most leeward plane, ¢ = 180 deg, thins the boundary

layer and leads to a very small streamwise separation (Fig. 2)

and a sharp pressure peak near the flare juncture (Fig. 7)
around _ = 180 deg. At o_= 8 deg, the calculated results from
both the parabolized Navier-Stokes code and the time-

dependent code predict a substantially weaker crossflow

separation, as compared to the experimental observation and,
hence, fail to simulate the features enhanced by the cross flow

separation observed by the experiment. This indicates a need
for further improvement in the turbulence modeling.

Figure 10 shows pressures on the (x-r) planes for the three
meridional angles, ¢,=0, 90, and 180 deg. These pressure
plots clearly show the variation of the static pressure field,

which is first under a compression from the flare shock
(various shock strengths) and is then followed by a strong

expansion over the convex corner.
The three-dimensional, time-dependent program is coded in

such a way as to permit treatment of a general body of

revolution, i.e., rb=f(x). In the present numerical
procedure, the program requires 0.00048 s per grid point per
time step on a CDC 7600. With a grid of 45 x 34 x 20, it takes

about 1.7 h of computation time for a converged steady

solution. The option of solving the time-dependent, full
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(©)e-0"

Fig. ]0 Static pressure on (x-r) planes at thr_ cJrcumferenthd angles
for a=4 deg.

Navier-Stokes equations is also coded. It requires about 25%

more computation time and, for the present case, results from

the thin-layer approximation and the complete Navier-Stokes

equation agree within 4%. Similar agreement is also ex-

perienced in the laminar flow case 9 as well as in Ref. 14. The

parabolized technique takes about 14 min of computation

time for marching a data plane consisting of a 40 x 19 grid 738

steps up to x o = 6/90, which is ahead of the interaction region.

It takes about I rain of CPU time to obtain a complete ogive-

cylinder-frustum supersonic inviscid solution (24x 19 grid

and 340 steps).

IV. Concluding Remarks

A supersonic turbulent flow over an ogive-cylinder-frustum

at angles of attack a =0, 4, and 8 deg has been calculated

numerically. The ogive-cylinder portion was solved efficiently

by a parabolized Navier-Stokes technique. The shock-wave

and boundary-layer interaction in the cylinder-frustum

portion was then solved by the time-dependent, thin-layer

approximation of the Navier-Stokes equations, with the

upstream boundary conditions prescribed from the

parabolized technique. Good agreement was obtained be-

tween computed and experimental results for surface pressure

on the ogive-cylinder portion, and on the cylinder-flare

portion at a = 0 and 4 deg. At c_ = 8 deg, the agreement is still

very good for the windward side. But the computed results

failed to predict a sharp pressure peak near the cylinder-flare

juncture. The results show that, while there is either no

crossflow separation, or only a weak crossflow separation on

the ogive-cylinder portion, the crossflow does effectively

transfer low or "negative" momentum fluid to the leeward

side and causes a small separation on the windward side with a

large separation occurring on the leeward side. As angle of

attack increases, the experimental results show that a strong

crossflow separation convects the low-momentum fluid away

from the leeward plane, thus leading to a small streamwise

separation at ¢_=180 deg, the most leeward plane. The

calculated results fail to predict a small streamwise separation

at _= 180 deg and indicates further improvement in the

turbulence modeling is needed.
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